

2021年10月8日 地方公共団体の危機管理に関する研究会

United Nations · UNESCO Chair on Engineering Education Educational, Scientific and · for Sustainable Development, Cultural Organization · Nagaoka University of Technology, Japan

令和元年台風19号による 豪雨被害と教訓

長岡技術科学大学 大塚 悟

N

■堤防の構造

- 堤防の構造その1
 - 堤防は増改築を繰り返しており、内部構造はわからない
 - 現地発生土を用いるため、良質材料とは限らない
 - 日本の河川は急流河川であり、降雨によって水位が上昇するが、すぐに下降するため、湛水を目的とした遮水コア構造はない

■堤防の構造

- 堤防の構造その2
 - 堤防の強度は雨水の浸透によって低下する
 - 堤体の補強対策は浸透防止と排水にある

X

No. 4 Environment and Disaster Prevention Lab. Nagaoka University of Technology

X

■ 基礎地盤と浸透水による堤体水位への影響

Environment and Disaster Prevention Lab. Nagaoka University of Technology

- 浸透水の影響
- ・
 堤体内の地下水位の上昇
 (悪影響)
- 左図では③~⑥が該当し、
 上向き浸透力が作用する事
 例が多い

国土交通省資料

No.

■ 水害(溢水や堤防破堤)の発生場所

No. 7 Environment and Disaster Prevention Lab. Nagaoka University of Technology

■ 水害(溢水や堤防破堤)の発生場所

【越流・溢水】

- 山地から平野部へ(河川流速が遅くなり水位の上昇)
- 平野部から山地へ(バック・ウオーターによる水位の上昇)
- 河川合流部の上流側(バック・ウオーターによる水位の上昇)
- 河道が曲線を形成(河川流速が遅くなり水位の上昇)
- 水衝部(河川の曲線部外側は水位が高い)
- 堤防高さの不足(粘性土地盤で堤体の沈下) 【侵食】
- 水衝部(水衝たりによる侵食の危険) 【浸透破壊】
- 基礎地盤に礫質土などの浸透層があり、粘性土などの土被りが 浅い場合(扇状地,砂礫層の行き止まり)

X.

- 堤体内に連続した礫質土が存在(堤体の飽和度が上昇)

■ 台風19号による千曲川の被災

信濃川水系流域図

第四紀

第三名

口里約

ジュリ筋

日本海

Environment and Disaster Prevention Lab. Nagaoka University of Technology No. 11

新潟市

■「千曲川・信濃川の形成史

100万年前

大地の隆起

隆起により陸地の形成,千曲 川は高田方面に流出

丘陵の形成

千曲川は長岡方面に流出

隆起により丘陵が形成され、

30~40万年前

越後平野の形成

河川による土砂で平野を形 成

「信濃川・越後平野の地形と地質」抜粋

No. 12 Environment and Disaster Prevention Lab. Nagaoka University of Technology

■ 河道特性(河床勾配、川幅縦断、河道状況)

No. 13 Environment and Disaster Prevention Lab. Nagaoka University of Technology

X

観測所位置図

	千曲川流域												
のざわおんせん 野沢温泉 野沢温泉村大字豊興	いいやま 飯山 飯山市大字飯山	しなのまち 信濃町 信濃町柏原	かさだけ 笠岳 高山村奥山田	ながの 長野 長野市箱清水	ひじりこうげん 聖高原 ^{麻穂村猿ヶ馬場三峰山}	すがだいら 菅平 上田市菅平高原	^{うえだ} 上田 _{上田市古里}	かけゆ 鹿教湯 上田市座教湯温泉	たてしな 立科 立科町戸田	かるいざわ 軽井沢 ^{軽井沢町大字長倉}	さく 佐久 ^{佐久市中込}	きたあいき 北相木 北相木村宇板置場	の ^{べやま} 野辺山 ^{南牧村野辺山}
208mm	136mm	190mm	335mm	142mm	250mm	296mm	154mm	333mm	271mm	324mm	311mm	395mm	172mm

犀川流域							
^{きなさ} 鬼無里 ^{長野市鬼無里}	しんしゅうしんまち 信州新町 長野市信州新町牧田中	^{おおまち} 大町 ^{大町市大町}	ほたか 穂高 安曇野市穂高	まつもと 松本 ^{松本市沢村}	まつもといまい 松本今井 松本市大字空港東	ながわ 奈川 松本市奈川	かみこうち 上高地 ^{松本市安曇上高地}
157mm	157mm	98mm	102mm	149mm	130mm	150mm	95mm

■ 千曲川の河川水位

国土交通省資料

No. 15 Environment and Disaster Prevention Lab. Nagaoka University of Technology

X

No. 16 Environment and Disaster Prevention Lab. Nagaoka University of Technology

X

■「千曲川の被災状況(上流側)

国土交通省資料

■ 千曲川の被災状況(下流側)

国土交通省資料

X

- 千曲川58K (穂保地区)の浸水範囲

長野県の被害状況:長野県災害対策 本部(11月11日10:00現在)

	-				
人		死者	5		
的被	行	访不明者	0		
「「「」	負貨	重傷	7		
人	協者	軽傷	130		
)		計	142		
		全壊	863		
住 家		半壊	2,002		
被害		一部損壊	2,522		
(単	上記以外	床上浸水	565		
市 し		床下浸水	2,220		
		計	8,172		

国土交通省資料

No. 20 Environment and Disaster Prevention Lab. Nagaoka University of Technology

- 千曲川58K (穂保地区)の治水地形分類図

■ 計画高水位の縦断図

N

■ 千曲川58K左岸(穂保地区)の河道状況

Environment and Disaster Prevention Lab. Nagaoka University of Technology No. 23

- 千曲川58K左岸(穂保地区)の堤防被害

被災箇所周辺では漏水等による噴砂等の状況は確認されていない

⑤裏法崩れ 10月13日 9:50撮 影

④決壊地点上流の裏法崩れ
 ■
 10月31日 15:40撮影

③決壊地点上流の裏法崩れ10月13日 14:50撮影

決壊地点下流側の裏法崩れ

10月13日 14:00撮影

②決壊地点下流側の裏法崩れ10月20日 16:00撮影

No. 24 Environment and Disaster Prevention Lab. Nagaoka University of Technology

No. 25 Environment and Disaster Prevention Lab. Nagaoka University of Technology

穂保地区の河川水位

省省

- 堤防の平面および断面図(穂保地区)

国土交通省資料

X

■ 穂保地区の堤防被害状況

■ 穂保地区の堤防被害状況

堤防破堤状況

国土交通省資料

落堀の形成状況

No. <u>32</u> Environment and Disaster Prevention Lab. Nagaoka University of Technology

■ 穂保地区の堤防および基礎地盤の土質

No. 33 Environment and Disaster Prevention Lab. Nagaoka University of Technology

X

■ 穂保地区の堤防断面(上流側)

No. 34 Environment and Disaster Prevention Lab. Nagaoka University of Technology

■ 穂保地区の堤防断面(下流側)

No. 35 Environment and Disaster Prevention Lab. Nagaoka University of Technology

X

穂保地区の堤防と長沼城址

国土交通省資料

V

No. 36 Environment and Disaster Prevention Lab. Nagaoka University of Technology

No. 37 Environment and Disaster Prevention Lab. Nagaoka University of Technology

■ 穂保地区の堤防基礎地盤の調査

国土交通省資料

No. 38 Environment and Disaster Prevention Lab. Nagaoka University of Technology

2020年6月6日撮影

堤防復旧状況

(決壊区間を含む 140mの範囲)

裏法の被覆状況(大型連節ブロック)

堤防復旧状況

- 千曲川104K左岸(諏訪形地区)の堤防被害

被災箇所周辺では延長約300mにわたり欠損し、千曲川橋梁(上田電鉄)左岸側橋台が被災

- 千曲川104K左岸(諏訪形地区)の堤防被害

■ 千曲川左岸104k付近堤防欠損地点周辺は、出水を受け砂州の移動など河道が大きく変化した。
 ■ 澪筋は位相が左右岸で逆転するような大きな変化となり、平成年代で水衝部ではなかった箇所が水衝部となった。

千曲川104K左岸の堤防修復履歴

国土交通省資料

図-1 欠損地点周辺の護岸整備状況図

③2017年7月27日撮影 ③2019年12月2日撮影

④2018年10月23日撮影④2019年12月2日撮影

■ 諏訪形地区の堤防被害と河川水位

国土交通省資料

No. 43 Environment and Disaster Prevention Lab. Nagaoka University of Technology

■ 諏訪形地区の堤防被害

国土交通省資料

No. 44 Environment and Disaster Prevention Lab. Nagaoka University of Technology

■ 諏訪形地区の堤防被害(堤防欠損)

■ 諏訪形地区の瀬替工の状況

■諏訪形地区の堤防復旧

■ 相之島地区(穂保地区対岸)の堤防被害

No. 48 Environment and Disaster Prevention Lab. Nagaoka University of Technology

- 堤体材料
 - 青粘土+東北硅砂6号(重量比1:3)
- フィルター・補強材

• 砕石6号

堤体に用いた中間土の物理特性及び強度特製

91s

No. 52 Environment and Disaster Prevention Lab. Nagaoka University of Technology

耐越流時間 209(s)

No. 54 Environment and Disaster Prevention Lab. Nagaoka University of Technology

- 千曲川58K (穂保地区)の治水地形分類図

■相之島地区の被害分析

- 地形の影響

No. 60

- 扇状地のために堤防と堤内地の比高差が小さい
- 堤内地は内水被害が生じて水がクッションの役割を果たす
- 基礎地盤は砂礫層であり、堤体の排水施設として機能
- 対策工(漏水対策:浸透破壊の防止)の影響
 - 河川水の堤体への浸入が防がれ、堤体の越流侵食に対する抵抗力が増大した2次的効果が発揮された(実験結果参照)

■ おわりに

- ソフト対策
 - 洪水の対策には流域全体の対応が必要(洪水の流出時間をシ フトする知恵が必要)
 - 今ある施設をフル活用する知恵が必要
 - 避難だけでなく、土地利用を見直す長期的視点が必要
- ハード対策
 - 危機管理型ハード対策(決壊までの時間を引き延ばす)が施 工された。越流が予測される場所に積極的な活用が望まれる。
 - 危機管理型ハード対策は未だ課題も多い。低コストで効果の 高い工法開発が期待される。